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Abstract

Tobler (1965) introduced bidimensional regression to the research field of geography in
1965 to provide a method for estimating mapping relations between two planes on the basis
of regression modeling. The bidimensional regression method has been widely used within
geographical research. However, the applicability in assessing the degree of similarity of
two-dimensional patterns has not much explored in the area of psychological research,
particularly in the domains of cognitive maps, face research and comparison of 2D-data
patterns. Describing Tobler’s method in detail, Friedman and Kohler (2003) made an
attempt to bridge the gulf between geographical methodological knowledge and psycho-
logical research practice. Still, the method has not been incorporated into psychologists’
standard methodical repertoire to date. The present paper aims to make bidimensional
regression applicable also for researchers and users unfamiliar with its theoretical basis.
The BiDimRegression function provides a manageable computing option for bidimen-
sional regression models with affine and Euclidean transformation, which makes it easy
to assess the similarity of any planar configuration of points. Typical applications are,
for instance, assessments of the similarity of facial images defined by discrete features
or of (cognitive) maps characterized by landmarks. BiDimRegression can be a valuable
tool since it provides estimation, statistical inference, and goodness-of-fit measures for
bidimensional regression.

Keywords: bidimensional regression, R, calculation, probability, similarity, Euclidean, affine,
projective, nonlinear, inference statistics, psychology, geography, cognitive cartography, open
source.

1. Motivation

This paper aims to make an important methodological procedure more manageable and,
thus, also popular. Waldo R. Tobler (1965), a geographer and cartographer, was the first
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Figure 1: Comparison of unidimensional and bidimensional regression.

to introduce the method of bidimensional regression to the scientific audience of geography.
His main aim was to estimate the degree of correspondence between two plane patterns of
point locations as typically shown in geographical maps. The essential difference between
bidimensional regression and standard regression procedures is that the data input consists
of paired locations or “bidimensional” coordinates (e.g., [x, y; x’, y’]) instead of unpaired
“unidimensional” coordinates (e.g., [x; x’] and [y; y’]). With one word, for bidimensional
regressions, the relationship between two variables is assessed by referring to measures on
two conjoint dimensions, for instance the 2D-coordinates of a point on a plane, whereas for
unidimensional regressions the different dimensions of coordinates are analyzed independently
from each other. In the example of map comparison (Figure 1), this difference can easily be
demonstrated. Whereas the projection of two separate dimensions realized by the approach
of unidimensional regression looses important information on the 2D-coordinates, the bidi-
mensional approach still uses the full 2D-coordinate information. In the given example, the
clear dislocations of all cities in terms of relations to each other could not be visible on the
analysis of single dimensions, not linked together. More generally, any kind of complex 2D-
dislocations, which do not follow a single distortion factor on one single dimension, could not
be described and interpreted in an adequate way if only unidimensional regressions are used.
Figure 1 illustrates the comparison of the commonly used unidimensional regression and the
bidimensional regression with European cities. Real positions of the cities (D)ublin, (L)ondon
and (P)aris are shown as solid black circles and fictive positions of corresponding cities (D’,
L’ and P’), whose positions should be compared with the original locations, are shown as
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red stars. The unidimensional regression splits all 2D coordinates from the original map into
two separate, unlinked vectors, thus, being only capable of assessing similarity between both
configurations on single dimensions. The bidimensional regression, instead, uses the full 2D
configurations of both position sets to assess the similarity.

The bidimensional regression procedure introduced by Tobler mainly returns a similarity
measure between two 2D configurations via a regression coefficient compatible with Pearson’s
R. The squared bidimensional regression coefficient R2 can concordantly be interpreted as
the amount of explained variance. The function provides information on the translation,
scaling, and rotation and whether the source configuration has to be mirrored to produce the
best fit for the target configuration. As the result of the bidimensional regressions contains
already the full pack of these information no explicit procrustes transformation has to be
conducted. Most importantly for scientific usage, the here presented R function calculates
additional information on the statistical significance of the targeted regression model as well as
the comparative model of different geometry based on F statistics and outputs the regression
coefficients along with their signficance levels based on t statistics described by Nakaya (1997).

2. Preposition

Friedman and Kohler (2003) made the first important step to introducing Tobler’s bidimen-
sional regression model to a non-geographical audience, not least by providing, in the form
of a Microsoft Excel sheet, the first openly accessible tool for calculating bidimensional re-
gressions based on Euclidean geometry. By means of the present R function Friedman and
Kohler’s approach shall be extended expanding the capabilities of the implemented method
with regard to several aspects: (1) affine geometry is integrated, (2) inferential statistics on
the models and the respective parameters are calculated, and (3) the full source code is pro-
vided in R, which enables researchers to automatize bidimensional regression procedures and,
thus, integrate them into everyday scientific work. Further details on the mathematical basis
of the procedure can be found in the original papers of Tobler (e.g., 1965, 1966, 1978, 1994).
Besides, I would like to refer to Nakaya (1997) for the stochastic basis of F and t statistics
applied to bidimensional regression, and, last but not least, to Friedman and Kohler (2003)
for a step-by-step description of the logic of bidimensional regression. Instead of merely re-
iterating what has already been stated, the present paper, thus, aims at integrating these
different contributions within a straightly applicable, easy-to-use R function that should facil-
itate an incorporation of bidimensional regression into the standard repertoire of psychological
research. This intention is very much in accordance with Tobler’s forward-looking view on the
potential applicability of bidimensional regression to sciences outside the field of geography:
“The method seems particularly useful for geographers [. . . ] but does not appear to have been
applied in social sciences” (Tobler 1965, pp. 131).

3. Implementation

The BiDimRegression package has been implemented and tested in ordinary R (R 2.15.2,
R Core Team 2012). It is available from the Comprehensive R Archive Network at http:

//CRAN.R-project.org/package=BiDimRegression and depends on the nlme package (Pin-
heiro, Bates, DebRoy, Sarkar, and R Core Team 2013). The code is commented throughout

http://CRAN.R-project.org/package=BiDimRegression
http://CRAN.R-project.org/package=BiDimRegression
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in English. In order to enable researchers to integrate the bidimensional regression procedure
into their own calculation functions, the code has been implemented as an R function with
simple data input and output. As this R function provides the calculation of bidimensional
regressions (i.e., the assessment of similarities between two 2D configurations) based on Eu-
clidean and affine geometries along with the analysis of several helpful relevant parameters
and the corresponding inference statistics, it seems to be particularly helpful and applicable
for any statistically oriented research area.

The call of the R function BiDimRegression is:

R> resultingMeasures <- BiDimRegression(coord)

Input parameter: coord stands for the R data.frame containing the coordinates of the
independent as well as the dependent configurations. According to the notation system
of Friedman and Kohler (2003) this R data.frame contains vectors with the following
names:

1. Vectors A, B provide the coordinates of the dependent configuration, i.e., the config-
uration which emerges from the independent (original) one, for instance, a cognitive
map. A refers to the first and B to the second dimension.

2. Vectors X, Y provide the coordinates of the independent configuration, i.e., the
original or base configuration, for instance, a geographical map. X refers to the
first and Y to the second dimension.

Several examples can be loaded as R data.frame via data(dataset, package = "BiDimRegression"),
where dataset refers to the considered data, e.g., "FriedmanKohlerData1" for example 1 by
Friedman and Kohler (2003). The available datasets are:

� "NakayaData: contains the example from Nakaya (1997, Table 2).

� "FriedmanKohlerData1": “Case 1” from Friedman and Kohler (2003).

� "FriedmanKohlerData2": “Case 2” from Friedman and Kohler (2003).

� "CarbonExample1Data": Example 1 on “Mona Lisa’s two faces” from the present article
(see Section 6.1).

� "CarbonExample2Data": Example 2 on “Maps of Paris” from the present article (see
Section 6.2).

� "CarbonExample3Data": Example 3 on“Cognitive vs. geographic maps”from the present
article (see Section 6.3).

Output values: Statistics on the overall fit of the bidimensional regressions for Euclidean
and affine geometries as well as detailed further information and statistics, organized as
a table (left column: Euclidean geometry, right column: affine geometry):

1. Date/time/processing time: Each output starts with a protocol of the used func-
tion including a date/time stamp plus the version of the employed R function.
For reasons of facility of inspection in case of repeated runs of the function, the
processing time needed for each calculation is displayed in seconds.
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2. r, r2 : Regression coefficient (R) and the squared regression coefficient (R2), re-
spectively.

3. F statistics: F statistics for the overall regression model including appendant
degrees of freedom (df1, df2 ), p value and, as for all following statistics as well,
the accordant significance level (*** =̂ p < 0.001, ** =̂ p < 0.01, * =̂ p < 0.05,
and n.s. =̂ non significant). As proposed by Nakaya (1997), significance tests for
the bidimensional regression are executed on basis of F distributions with df1 =
p− 2 (degrees of freedom of the nominator) and df2 = 2n− p (degrees of freedom
of the denominator). According to Nakaya (1997, Table 1) parameter p is defined
as the number of elements needed to calculate the associated model with p = 4 for
Euclidean and p = 6 for affine geometry; parameter n is defined as the number of
coordinate pairs.

4. DAIC statistics: Following formulas (52–56) in Nakaya (1997), the AIC (Akaike
Information Criterion) is calculated for the referring bidimensional model against
the bidimensional null model. The AIC is an indicator that accounts for ”the
principle of parsimony” following the idea that a superior model is one that is not
only characterized by a higher goodness-of-fit, but also by being more frugal. If
DAIC (i.e., the difference of both AICs) is smaller than zero, the bidimensional
regression model is better than the bidimensional null model.

5. alpha1–alpha2 : Following the notation of Friedman and Kohler (2003), the alphas
reflect the intercept vectors of the bidimensional regression equation shown below.

6. beta1-beta4 : Following the notation of Friedman and Kohler (2003), the betas
reflect the slope vectors of the bidimensional regression equation shown below;
beta3 and beta4 are not available for Euclidean geometry.

7. scaleX : Scaling factor on the first dimension (1.0 means no scaling; values below
1.0 indicate a contraction; values above 1.0 indicate an expansion).

8. scaleY : Scaling factor on the second dimension. Per definition, scaleY equals
scaleX for the Euclidean geometry.

9. angle: Rotation angle (in degrees).

10. shear : Information on the shearing of the transformed configuration, see Friedman
and Kohler (2003, p. 490). Per definition, shear always equals zero for Euclidean
geometry.

11. Distortion distance statistics: Following the extension of the bidimensional regres-
sion developed by Waterman and Gordon (1984) and refined by Friedman and
Kohler (2003), distortion distance statistics calculate the distortion of a dependent
configuration from the original one. In line with Friedman and Kohler (2003) di-
ABSqr and diXYSqr (with “Sqr” always indicating squared values) are displayed
as proportions of unexplained variance. In contrast to an earlier suggestion by
Waterman and Gordon (1984) these values are not multiplied by 100, so values
range from 0 to 1 (see for details Friedman and Kohler 2003, Footnote 1).

12. Comparative test statistics: To allow comparisons between the Euclidean and
the affine solution, two different comparative test statistics are provided: (1) An
F statistic based on formula (58) in Nakaya (1997) taking sum of squares and the
number of parameters of both models into account and (2) an approach based on
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AIC statistics, described by formula (62) in Nakaya (1997) calculating AIC, the
difference of both AIC values. Statistical significance is indicated by the F statis-
tic. In the case of significance (p < 0.05), negative values for DAIC are interpreted
as indicating a superior affine solution, while positive values indicate a superior
Euclidean solution.

Note: The main measures are additionally returned from the function to the data.frame

resultingMeasures consisting of two further data.frame sub-structures labeled euclidean
and affine.

The main equation for the Euclidean bidimensional regression with the independent coordi-
nates A and B and the dependent coordinates X and Y is given by

(X>Y >) = α+ β · (AB) (1)

which transforms to the following matrix version for Euclidean geometry(
X>

Y >

)
=

(
α1

α2

)
+

(
β1 −β2
β2 β1

)
·
(
A
B

)
(2)

Note that like in the case of unidimensional regression it is only a matter of definition which
coordinates are labelled as independent and dependent, respectively. Analogous to unidimen-
sional regression it is, though, helpful to theorize which configuration is to be taken as the
given (the “original”) one and which configuration has evolved from it. In the case of cognitive
maps, this decision can easily be made: It seems to be most useful and sensible here to define a
present (geographical) map as source configuration or independent variable set, and to define
the cognitive map that might, for instance, have been produced using multidimensional scal-
ing of distance estimations as dependent variable set. In the case of comparing, for instance,
two historic maps or any other 2D-data without any concept of originality, this clear-cut dis-
sociation between independent and dependent variable set is no longer possible. Furthermore,
it is quite essential to interpret the returning values and calculations in direction from the
independent towards the dependent variable set, e.g., a return value of angle = 45 would
mean that the “independent” configuration would optimally fit the “dependent” configuration
by clockwisely rotating the independent configuration by 45◦ (= π/4).

4. Statistical testing of the models and the parameters

Importantly, Nakaya (1997) extended Tobler’s seminal idea of bidimensional regression by
implementing a framework of inference statistics: In formulas (50) and (33) of his original
article he introduced F statistics for testing the overall estimated model and t tests for testing
the significance of the respective model parameters. While adopting the F statistics for overall
model testing the present R function implemented a much simpler approach for testing the
model’s parameters {alpha, alpha2} and {beta1, beta2, beta3, beta4} against zero utilizing
the standard R function lm for testing linear models. To use this standard R function, an
ordinary unidimensional multiple regression without intercept has to be conducted on basis
of design matrices of the referring geometries (De for Euclidean and Da for affine geometry)
as described in Nakaya (1997, Table 1):

De =

(
1 0 x −y
0 1 y x

)
(3)
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Da =

(
1 0 x y 0 0
0 1 0 0 x y

)
(4)

The application of the respective design matrix to the parameter vector γ, see Nakaya (1997,
Table 1 and Formula 29), yields the following multiple regression model for Euclidean geom-
etry (with n being the number of coordinate pairs):

ω = Dn
e γ + ξ (5)

where ω is a target vector (dependent variable), (u1, . . . , un, v1, . . . , vn)>, ξ is a residual vector,
and the Euclidean design matrix for n sample points is written

Dn
e =



1 0 x1 −y1
1 0 x2 −y2
...

...
...

...
1 0 xn −yn
0 1 y1 x1
0 1 y2 x2
...

...
...

...
0 1 yn xn


(6)

The respective multiple regression model for affine geometry is given by:

ω = Dn
aγ + ξ (7)

where the affine design matrix for n sample points is written

Dn
a =



1 0 x1 y1 0 0
1 0 x2 y2 0 0
...

...
...

...
...

...
1 0 xn yn 0 0
0 1 0 0 x1 y1
0 1 0 0 x2 y2
...

...
...

...
...

...
0 1 0 0 xn yn


(8)

Comparative testing of the models for Euclidean against affine geometry mainly follows two
separate methodological approaches: a) classical theory of inferential statistics and b) calcu-
lation of AICs. Further information on both methods can be found in formulas (59) and (62),
respectively, explained in detail by Nakaya (1997).

5. Application

To demonstrate the functionality and applicability of the BiDimRegression R function, we
will feed the function with the original data set provided by Friedman and Kohler (2003,
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Table 3). As these authors gave an excellent introduction and overview on bidimensional
regression, the reader might benefit most by carefully reading their theoretical description of
the method when applying the R function presented here. The original dataset can easily be
implemented by calling the following command that initializes the vectors of the independent
coordinates with A = (12, 19, 21, 18) and B = (16, 19, 18, 14) and the vectors of the dependent
coordinates with X = (0, 10, 8, 6) and Y = (0, 0, 5, 5):

R> data("FriedmanKohlerData1", package = "BiDimRegression")

The bidimensional regression will then be executed by:

R> BiDimRegression(FriedmanKohlerData1)

This command will execute the R function BiDimRegression encompassing the calculation
of two bidimensional regressions based on Euclidean and affine geometry, respectively, as well
as accordant comparative statistics on them. The result is in accord with the outcome shown
in Table 3 (“case 1”, top section) provided by Friedman and Kohler (2003), with X, Y as
independent variables. If, in contrast, A, B should be defined as the independent variables
(“case 2”, bottom section), the referring outcome will be calculated analogously. By filling the
R data.frame of the input parameter with her own 2D-configurations, the user will be able
to calculate bidimensional regressions on these data. To show summary statistics the user
can execute the summary() method, or, for a more detailed output the print() method.

Another example should help to replicate and to reanalyze step-by-step the findings described
in detail by Nakaya (1997). The following calls will reproduce the case of 19 to be matched
coordinate pairs discussed by Nakaya (1997, Table 2):

R> data("NakayaData", package = "BiDimRegression")

R> BiDimRegression(NakayaData)

6. Further examples on bidimensional data

In the following section I want to demonstrate the applicability of the BiDimRegression

function by referring to three different datasets I have gathered together over the last years.
I have selected example 1 from the domain of aesthetics to show how the method can be
utilized for assessing the similarity of two portrayed persons, actually the Mona Lisa in the
world famous Louvre version and the only recently re-discovered Prado version. Example 2
originates from the area of geography and inspects the accuracy of different maps of the city
of Paris which were created over the last 350 years as compared to a recent map. Finally,
example 3 focuses on demonstrating how good a cognitive map recalculated from averaged
cognitive distance data fits with a related real map. Therefore two samples of East and West
Germans, respectively, will be used to get notion on the typical degree of correspondence
between cognitive and real maps in terms of bidimensional regression coefficients.

6.1. Example 1: Mona Lisa’s two faces

Bidimensional regression is always of high value if two pictures showing discrete landmarks
that can unambiguously matched for both versions have to be compared. Only recently, a sec-
ond version of the Mona Lisa has been re-discovered in Madrid’s Prado museum and has now
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been revealed as a real masterpiece in terms of craftsmanship. The Prado version strongly
resembles the Louvre version, despite different colorization stemming from age-related yellow-
ing of the varnish of the Louvre version. To calculate the paintings’ similarity on an objective
basis, I defined 36 clearly visible landmarks in both versions (tip of the nose, nostrils, hairline,
etc.) and fed the BiDimRegression function with the coordinates of the Louvre version as
independent and the coordinates of the Prado version as dependent variables. The data sets
can directly be loaded via data("CarbonExample1Data", package = "BiDimRegression")

and used via BiDimRegression(CarbonExample1Data). The output, e.g., via print(), shows
that both paintings are featuring nearly identical landmark aspects (e.g., for the Euclidean
version: R2 = 0.998, with F2,68 = 20089.2, p < 0.0001).

6.2. Example 2: Maps of Paris

The development of bidimensional regression was initiated by geographers to assess the ac-
cordance as well as to specifiy deviations between different geographic maps. By feeding
the BiDimRegression function with coordinates of different maps of Paris we can calculate
the accuracy of these maps in comparison with a standard tourist map of today. To get
an imagination of the precision of historic maps I measured the positions of several distinc-
tive landmarks of Paris, which were available over a long period of time: (1) Place de la
Concorde, (2) Saint-Germain-des-Prés, (3) Louvre, (4) Théâtre de l’Odéon, (5) Les Halles,
(6) La Sorbonne, (7) Notre Dame de Paris, (8) Hôtel de Ville, (9) Temple, (10) La Bastille,
(11) Hôtel des Invalides, (12) La Madeleine, (13) École Militaire. By comparing the co-
ordinates of these 13 landmarks as defined by a map originated in 1789 and the modern
map, I found a very high correlation between both versions (e.g., for the Euclidean version
R2 = 0.996, with F2,22 = 2545.4, p < 0.0001). Similar fits were revealed for even older
maps, though the number of corresponding landmarks was reduced from 13 to 12 for the
maps of 1705 and 1728 and and to 10 for the map of 1652. The coordinates of the of-
ficial map of the Paris metro, known for distortions due to its schematic design, deviated
most, but still reached a clear and high fit with the accurate actual map (e.g., for the Eu-
clidean version R2 = 0.938, with F2,22 = 167.6, p < 0.0001). The data sets can directly
be loaded via data("CarbonExample2Data", package = "BiDimRegression") and used via
BiDimRegression(CarbonExample2Data).

6.3. Example 3: Cognitive vs. geographic maps

The last example also refers to the area of maps; it links cognitive psychology with geography.
Approximately 15 years after the German reunification I conducted a study on the cognitive
maps of adult Germans who were socialized in the western or the eastern part of Germany (the
Federal Republic or the former German Democratic Republic, respectively). In that study I
was particularly interested in the so-called ”mental wall” between East and West Germany as
a function of the social attitude towards the German reunification (Carbon and Leder 2005).
For reasons of demonstration typical fits that can be obtained for such cognitive maps, I will
now focus on the accuracy of the cognitive maps emerging from averaged data from Germans
raised in the western vs. eastern part of the country. In the original task 83 participants were
asked to estimate distances across Germany; for the sake of the specific hypothesis we selected
only those participants who were clearly socialized in one of the two parts of Germany till
the reunification of 1990. This criterion reduced the number of participants to n = 57 (East



10 BiDimRegression: Bidimensional Regression Modeling Using R

Germans: n = 25, West Germans: n = 32). We excluded Berlin from the analysis due to its
special status as Berlin could be labeled neither as a (former) western nor as a (former) eastern
city. The 45 distances between the 10 remaining cities (eastern cities: Cottbus, Erfurt, Leipzig,
Magdeburg, Rostock; western cities: Düsseldorf, Hamburg, Hannover, Nürnberg, Stuttgart)
were submitted to MATLAB’s mdscale function (The MathWorks, Inc. 2011) for nonclassical
multidimensional scaling (mds; 2-dimensional solution; SSTRESS as convergence criterion)
for obtaining 2-dimensional coordinates for each city. The datasets for both samples (East
and West Germans) can be found within the CarbonExampl1Data data.frame. For both
samples, comparably high fits with the real maps, that were also generated via nonclassical
mds, were obtained, e.g., for the Euclidean version: R2 = 0.910 (F2,16 = 80.4, p < 0.0001) for
East Germans and R2 = 0.968 (F2,16 = 244.0, p < 0.0001) for West Germans. The data sets
can directly be loaded via data("CarbonExample3Data", package = "BiDimRegression")

and used via BiDimRegression(CarbonExample3Data).

7. Conclusion

Referring to methodical work elaborated by Tobler (1965, 1994) and other authors like, for
instance, Nakaya (1997) who has established inference statistics on the employed methods,
the present paper provides an R function for facile calculation of bidimensional regressions
for Euclidean as well as for affine geometries. Researchers can quite effortlessly combine this
function with their own R functions. The calculated models, which are also analyzed via com-
parative statistics, are outputed via R console and standardized ASCII .txt file. I hope the
implementation of this R function that provides an economic means of calculating bidimen-
sional regressions, extended by the capability of conducting according inferential statistics,
will contribute to increasing the applicability and publicity of this important method for as-
sessing similarities between any 2D configurations in the context of psychological research, and
that it will be incorporated into the standard repertoire of psychologists’ statistical expertise.
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