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Abstract

We present a framework for cognitive modeling of esthetic decision making based on dynamic prototypes. Starting point of our work
is empirical evidence which shows that subjects’ initial ratings of attractiveness of objects can be influenced by adapting them to new,
typically more innovative objects. The framework consists of three steps: (1) Estimating an initial prototype from the ratings, (2) adapt-
ing the prototype due to the impact of the new objects, and (3) predicting the attractiveness ratings for subsequently presented object by
their similarity to the adapted prototype. The framework allows representation of prototypes and objects as feature vectors containing
metrical or categorial attributes or as structural representations. Within the framework, a variety of similarity measures and similarity-to-
rating mappings can be explored to gain more precise insight into the cognitive processes underlying esthetical appreciations. We instan-
tiated the framework for a first set of data obtained in a psychological experiment. In this experiment subjects rated the attractiveness of
an initial set of chairs which varied in length of the backrest and the saturation of the color. Subjects then were adapted to a new set of
chairs with extreme values on both dimensions. Finally, subjects again rated the initial objects. The framework was instantiated with an
e-function to model the non-linear effects of variations in length and saturation on the judgements. Although there were only 25 data
points per subject, we got satisfying results in predicting the shift of esthetical judgements due to adaptation to novel stimuli.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Esthetical judgements are not only underlying the evalua-
tion of works of art but also guide our purchase decisions for
mundane objects (Whitfield & Slatter, 1979; Hekkert,
Snelders, & Wieringen, 2003). Whenever we buy something
— may it be clothing, furniture, a phone, or a car — our deci-
sion is influenced by esthetical aspects. That is, given a class
of objects with comparable functionality, price range, and
brand image, we still prefer one object over another. Often,
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this preference is based on visual cues and, more often than

not, we cannot give a clear justification for our preference.
One possible explanation for such esthetical preferences is

the similarity of objects to our individual prototype for the
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object category (Rosch, 1978; Kruschke, 2008). Such proto-
types are constructed over personal experience and therefore
dynamic (Medin & Heit, 1999; Ashby & Maddox, 2005; Bli-
jlevens, Carbon, Mugge, & Schoormans, 2012). This is
reflected, for example, in the way we are affected by changes
of fashion. The majority of people typically does not like a
new style in clothing or car design if it is freshly introduced
to the market. However, if they are exposed to the new
design over some time, their esthetical judgement adapts
and the previously liked designs appear less attractive while
the new design gains attractiveness (Carbon, 2010).

Experimental evidence for adaptation effects in esthetical
judgements was, for example, given by Faerber and Carbon
(2010). An experimental procedure for an adaptation exper-
iment can be realized in the following way: Initially (77),
subjects are presented a set of stimuli (e.g., chairs) which
vary on some dimensions (e.g., length of backrest and satu-
ration of color, see Fig. 3). Some objects are similar to the
common standard — that is, prototypical — artefacts, others
deviate to some degree from typical appearance. Subjects
have to rate the attractiveness of the given objects. In a sec-
ond phase (adaptation phase A), subjects are induced to
engage with artefacts which usually deviate strongly from
the prototype. For example, they have to rate different func-
tional and aethetical features of these objects. Afterwards
(T»), subjects have to rate the attractiveness of the objects
in the initial set again. Over several experiments, Carbon
and his coworkers could show that if subjects were engaged
with strongly deviating objects during the adaptation phase,
at T, attractiveness ratings shifted towards a preference of
the objects in the adaptation phase.

Carbon and colleagues (Carbon, 2011) explain this effect
by recalibration or dynamic prototype change (see Fig. 1):
When confronted with a new artefact which deviates too
much from the prototype for this class of objects (e.g., very
angular car shape, belly-bottom trouser legs), such new
artefacts are rated as not attractive (7). However, if one
gains more experience with such innovative objects (A4),
the prototype undergoes a dynamic change, incorporating
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Fig. 1. Illustration of a prototype-shift in feature space due to adaptation
to novel objects (prototype represented as black circle, novel objects
represented as white squares).

the new objects. Consequently, after having inspected and
processed the adapting stimuli, the objects which were orig-
inally similar to the prototype at (7)) are now more distant
and the objects which originally deviated more from proto-
type are now similar to the updated prototype (75).

To gain more precise insights into the dynamic changes
of prototype representations and their impact on esthetical
decision making, we propose a cognitive modeling frame-
work which allows (1) to estimate an initial prototype from
esthetical judgements of objects at the time of the first
exposure (77), (2) to adapt this initial prototype with
respect to the adaptation set (4), and (3) to use this proto-
type to predict subsequent esthetical judgements of objects
(T5). Such a model can help to gain a deeper understanding
of esthetical decision making. Furthermore, it can provide
an initial building block for an assistant system which
allows designers to evaluate the possible market success
of new design lines.

In the following, we first propose a general framework
for prototype based generation of esthetical judgements.
Afterwards, we present a first instantiation of the frame-
work where we model data gained from a psychological
experiment. We conclude with a short discussion and fur-
ther work to be done.

2. A framework for generating esthetical judgements

Given the proposition that an individual generates his/
her esthetical judgement of an object with respect to its
similarity to his/her prototype, the general framework
can be expressed as

Yo € O : K(a(o,p)) = a(o) (1)

where (o, p) is the similarity of the object o to prototype p,
K is a kernel function, and a(o) is the resulting attractive-
ness rating for the object. To simplify matters, we do not
discriminate between a(o) as the mental representation of
the attractiveness of the object and a(o) as the externally
expressed judgement which, for instance, is given as a rat-
ing on a Likert scale.

To instantiate the general approach, the following ques-
tions must be answered:

e What kind of information of the real-world objects is
included in the prototype?

e How is the prototype represented?

e With what type of measure is the similarity between pro-
totype and object established?

e Which kernel function is used to map the similarity to
the attractiveness rating?

2.1. Illustration
We illustrate these aspects using the material which will be

presented in more detail in Section 3. The objects under con-
sideration are chairs. A chair might be represented using:
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e holistic visual information such as shape, which charac-
terize a chair as elegant, and comfortable.

e metrical visual features such as length of the backrest,

e metrical visual relations such as the proportion of length
of the beackrest to depth of the seat,

e metrical non-visual features such as weight,

e categorial visual features such as color (which typically is
perceived qualitative and not as a metrical feature repre-
senting wave length),

e categorial non-visual features such as producing country,

o qualitative spatial relations such as that the back legs of the
chair are under the backrest or in front of the backrest.

Each subset of these different types of information
implies a different representational format (Schmid, Ragni,
Gonzalez, & Funke, 2011). If only metric features are con-
sidered, each object can be represented as a feature vector
and the prototype can be represented by an average value
for each feature.

Under the — in most domains not valid — assumption
(Nosofsky, 1988), that the features are not correlated and
that the variability of feature values is comparable, a stan-
dard distance metric, such as Euclidian distance or Manh-
atten distance could be used to calculate the similarity
between an object and a prototype. However, it is an open
question, whether one of these measures is guiding the
mental similarity assessment or whether more complex sim-
ilarity measures are needed. Maybe, different features have
different salience which would result in a measure with dif-
ferent weights for the different features. In general, the sim-
ilarity measure should not only take into account the
isolated features but also interaction terms.

Finally, there are many possible mappings from similar-
ity to esthetical judgements. In the most simple case, this
might be a linear regression fy + f1(o(0,p)) = a(o). In the
case of a similarity measure which deals with different com-
ponents of object-representation differently, ¢ and ; might
be vectors. Alternatively, the mapping might be non-linear
and only captured by specific non-linear functions. A typ-
ical obeservation is that ratings of attractiveness are based
on the MAYA (most advanced yet acceptable) principle
(Hekkert et al., 2003). That is, objects which are very sim-
ilar to the prototype are not perceived as highly, but only
medium attractive (because they are somewhat boring)
and objects which deviate too far from the prototype are
considered as highly unattractive.

The proposed general model can be viewed as a guideline
for exploring empirical data to obtain more specific informa-
tion about the processes underlying esthetical decision
making.

2.2. Identifying the similarity and mapping functions

In the context of an experimental setting researching
adaptation as described above (see Section 1), the ratings
obtained during initial representation (77) of objects are
used to determine K(o(o,p)) in such a way that the ratings

of each individual can be reproduced as exactly as possible.
To identify ¢ and K, we propose the following procedure:

e Predefine a set of plausible measures X = {agy, ..., g,}
and functions x = {K, ..., K,,,}.

e For each combination K{as{o,p)) estimate p such that
the prediction error of a(o) is minimal over all objects
o in O,. How the estimation can be performed depends
on the form of ¢; and K. In the most simple case, it
might be possible to gain the estimate analytically.
Alternatively, the prototype values could be identified
by gradient descent, or — if non-derivable functions are
involved — by Monte Carlo studies.

e Select the most simple function K; and measure ¢; which
produces minimal errors.

We believe it reasonable to assume that the functions
found to be fitting the individual ratings best should be
kept constant for the attractiveness ratings after the proto-
type adaptation phase (at 75).

2.3. Predict esthetical judgements due to dynamic shift of the
initial prototype

To include the dynamic change of the initial prototype
due to adaptation to novel objects, the framework is
extended to

Yo € O: K(a(0,S(p,04))) = a(o) (2)

where S(p, O,) is a function modeling the shift of the initial
prototype due to adaptation.

The form of the shift function is dependent on the similar-
ity measure and mapping function obtained from the initial
ratings. If, for instance, the similarity measure is based on
independent, equally salient features and the kernel is a lin-
ear function, than the prototype is shifted in the direction of
the feature vector of the average over all objects in the adap-
tation phase (see Fig. 1). However — again — things can get
more complex. Therefore, different shift functions S should
be investigated in the context K; and o, identified in the pre-
vious step. The general procedure for selecting a suitable S'is
analogous to the previous step.

3. Experiment

The stimuli used in the experiment are chairs which were
constructed by varying length of the backrest (/(0)) and sat-
uration (s(0)). A matrix of chairs where length and satura-
tion is varied in ten equi-distant steps is given in Fig. 2. For
the experiment, chairs for every second variation were
selected as test sets — that is, saturations are —60, —30, 0,
30, 60 and lengthes are 1, 3, 5, 7, 9. This selection was made
to ensure that the visual variations were perceivable when
presenting the objects at a computer monitor. To refer to
a specific chair o, we give its feature vector (/(0),s(0)).

21 Subjects participated in the study. In a first session
(T)), subjects rated each of the 25 chairs of the test set
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Fig. 2. Variations of length and saturation.
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Fig. 3. Object space with 10 equi-distant variations of the two dimensions length of chairback and saturation (only every second variation per dimension

was included in the initial object set).

on a 7-step Likert scale. Afterwards (A), subjects were
adapted to four chairs with extreme values: the most
extreme chair with (9,—60) was already contained in the
test set, the other three chairs were the neighbors
(8,—60), (8,—45), and (9,—45) (see Fig. 3). After a time-
lag of seven days, this adaptation set was presented again
(A) and afterwards (75), attractiveness ratings for the 25
test chairs were obtained the second time.

The experiment was not specifically designed to explore
our cognitive framework. With one rating for each of the

25 chairs in the test set, we have a rather small number
of data available for individual models. Consequently, we
can only explore similarity measures and mapping func-
tions which involve a small number of free parameters.
Furthermore, it can be assumed that saturation is perceived
more dominantly for chairs with longer backs than for
chairs with shorter ones. Finally, there might be some
impact of the amount of space taken by a presented chair
in relation to the background. With these caveats, we
now will present the cognitive models.
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Fig. 4. Interaction between length /(0), saturation s(o) and initial attractiveness rating a(o) for three subjects.

4. A model for attractiveness ratings of chairs 4.1. Excluding a simple linear model
To generate a model based on our framework presented Applying the Occam’s razor principle of simplicity, the
in Eq. (1), the values of length and saturation were normal-  first choice for modeling was to assume that ratings of

ized via z-transformation. attractiveness are linearly dependent on similarity. That
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there is no simple linear relation between prototypicallity
and attractiveness is obvious from the interaction diagrams
of l(0), s(0) and a(o) (see Fig. 4).

4.2. Approximating a first model for the initial prototype
To capture the non-linear effect of variations in length

and saturation, we propose the following instantiation of
the framework given in Eq. (1):

a(o,p) = ( :;EZ; : ip: ) (3)
K((x1,x5)) = Bo + Bre™ + Pre™ + e ™™ (4)

Using the e function (instead of a polynomial) is reason-
able because it results in the fewest possible number of free
parameters in the models. It also is supported by the usage
of Shepard’s exponential law in prototype and exemplar
theories of similarity and categorization (Jédkel, Schlkopf,
& Wichmann, 2008). When taking into account two feature
dimensions and their interaction the minimal number of
free parameters is 4. The initial prototypes were estimated
by minimizing

15 (@(0)) - K(0(0np)))? (5)
24

for each subject where o; and p are vectors (/, s). The values
for the initial prototypes (/,, s,) were calculated using gra-
dient descend with decaying learning rate n with initial va-
lue # =0.025 and momentum o = 0.25 iterating over 500
cycles. Values /, and s, were initialized to the means of
the highest rated objects.

The estimated prototypes produced acceptable small
deviations between predicted and observed attractiveness

ratings (see Table 1). The estimated initial prototypes are
given in Fig. 5. Note, that there are three subjects
(11,15,21) who preferred chairs with long backrests from
the beginning.

4.3. Predicting attractiveness ratings from the shifted initial
prototypes

Given the estimates for the individual initial prototypes,
in the next step the model was applied to predict the attrac-
tiveness ratings after shifting the initial prototype due to
the adaptation set. Eq. (2) as proposed above was used
for estimation. The parameters 8 estimated for the initial
prototype were kept as it is reasonable to assume that the
individual influence of the different features is constant
within subjects. Again, gradient descent was applied with
initial # = 0.0005.

With the exception of three subjects (6,11, 15), the pre-
dicted attractiveness ratings again have acceptable small
deviations from the observed ratings. For these three sub-
jects it might be possible that the good fit for the initial pro-
totype was due to a local minimum.

The prototype shifts are given in Fig. 5. For the
majority of subjects the shift is in the direction of longer
chairs. This is plausible because the adaptation set con-
sisted of four chairs with lengths 8 and 9. Only subjects
11, 17, and 21 show a shift towards shorter lengthes.
However, this shift is very small for 17 and 21. In the
direction of saturation (which was —60 and —45 in the
adaptation set) there is no clear pattern for the shift. This
might be due to the fact that the visual salience of satu-
ration is more variable between subjects than the visual
salience of length.

Table 1

Estimated values (/,,s,) for the initial prototype and estimated values (/,,s,) for the shifted prototype with mean squared residuals.

Pb L, Sp MSSQ (ay) I Sy MSSQ (ay)
1 1.42 41.08 17.29 1.75 41.07 39.22
2 1.00 —-0.07 6.81 1.73 —0.004 48.51
3 1.54 9.67 27.22 2.79 —0.005 65.62
4 1.43 32.34 37.58 1.56 32.34 24.10
5 1.56 —51.09 10.19 2.13 —51.09 17.67
6 1.66 59.58 13.97 3.91 59.61 100.42
7 2.24 57.63 10.57 2.37 57.65 25.88
8 1.95 51.28 7.64 2.53 32.35 45.06
9 1.25 —4.78 29.46 3.00 —5.18 31.66

10 1.99 —50.52 18.93 5.00 —50.51 45.09

11 6.38 48.60 9.91 5.00 30.00 108.15

12 1.54 9.78 11.79 1.60 18.31 23.93

13 3.88 —-35.14 17.86 4.74 —35.13 34.03

14 1.53 55.55 11.26 1.89 55.55 89.45

15 8.21 —56.70 44.86 8.33 —56.75 103.34

16 1.97 —59.97 14.97 3.14 —58.13 24.49

17 1.33 —25.16 2.66 1.23 —-25.16 11.77

18 3.72 54.17 8.34 4.02 47.23 14.09

19 2.17 40.46 38.44 2.25 40.46 37.94

20 1.00 —44.86 6.02 1.90 —44.86 33.56

21 7.05 29.91 19.24 6.72 29.00 21.11
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Fig. 5. Initial prototypes and their shift which predict initial attractiveness ratings and attractiveness ratings after adaptation.

5. Conclusion

Given empirical findings which demonstrate that esthet-
ical preferences change dynamically over time, we pro-
posed a cognitive framework. Within this framework it is
claimed that esthetical judgements are based on similarity
to prototype. Similarity assessment and mapping of simi-
larity to attractiveness are proposed as sub-processes
underlying esthetical decision making. The framework
therefore gives a guideline to explore empirically which
types of similarity measures and mapping functions are
realized when subjects perform ratings of attractiveness.

We explored the framework with empirical data which
were obtained in an experiment where subjects rated the
attractiveness of chairs which varied in the length of the
backrest and the saturation of color. Although there were
only 25 data points per subject, we got satisfying results
in predicting the shift of esthetical judgements due to adap-
tation to novel stimuli.

Based on this initial work, there are several aspects
which we plan to explore in future work: In the current
model the shift of the prototype is estimated in a single time
step over all objects of the adaptation set. A psychological
more plausible approach would be to model an incremental
shift. However, for an incremental model, it is necessary to
determine in advance (a) the degree of the shift — that is,
how strong a new object pulls the prototype in its direction
—and (b) the direction of the shift — that is, the possible dif-
ferent weights of the dimensions in the object space. Such
an incremental model would have an additional advantage
since it allows a new way to combine empirical evidence of
mere exposure respectively the exemplar theory of catego-
rization and prototype theory: Because each presented
object induces a shift, the prototype updates are sensitive

not only to variations in object attributes but also to fre-
quency of object presentation. That is, if the same objects
is presented several times, each presentation would induce
a shift.

Another aspect we plan to explore in the future is to
investigate more sophisticated measures of similarity, e.g.,
using different similarity measures for the different aspects
of the objects. Another alternative could be to replace the
similarity measure by fuzzy memberships. Furthermore,
we are interested in models which capture a mixture of met-
rical and categorial features and in models which capture
the holistic visual impression.

Finally, the experiment was not specifically designed to
test the proposed framework. Therefore, we plan to con-
duct more specific experiments to explore the explanatory
power of our framework. Especially, we plan to investigate
attractiveness ratings when object appearance is varied on
different kinds and numbers of dimensions. Stimuli should
be obtained from different artificial and natural domains.
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